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A numerical method is presented that solves in a consistent fashion, conservation equations 
for both vorticity and linear momentum in multidimensional fluid-dynamics calculations. The 
equations are given in both two- and three-dimensional Cartesian geometry, and it is shown 
how the method can be easily implemented in a two-dimensional Eulerian fluid-dynamics 
code. The results of example calculations, which were performed with and without the new 
method, show the large errors that can arise when the vorticity equation is not solved in 
compressible flow calculations. 

INTRODUCTION 

This paper presents a finite-difference method for multidimensional numerical 
fluid-dynamics calculations, which solves conservation equations for both linear 
momentum and vorticity. The method, called the “Turn function and vorticity” 
(TFV) method, improves the accuracy of previous techniques for calculating both 
low and high Mach number flows in which the divergence of the velocity field is 
nonzero. It is an easy modification to many existing hydrodynamics codes that 
conserve linear momentum, and the resulting increase in computational time is about 
twenty-five percent in the two-dimensional calculations we have performed. 

The method is implemented in the following manner. In addition to solving the 
linear momentum equations, one solves the equation(s) for the component(s) of the 
vorticity. Without any other modification, the result of solving the linear-momentum 
equations using finite differences, is a velocity field that is not, in general, consistent 
with the computed vorticity field. To achieve this consistency, we add an anti- 
symmetric part T’ to the stress tensor that is used in the linear-momentum equations. 
In two space dimensions, this artificial stress has a single scalar component, which 
we call the “Turn function.” This artificial stress contrasts with the true stress tensor 
of most fluids, which is symmetric [ 11. A derivation similar to that of the usual 
Helmholtz vorticity equation shows that an anti-symmetric stress can produce 
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vorticity. In the present circumstances, this production of vorticity is chosen so as to 
make up for vorticity destruction that otherwise results from the finite-difference 
approximations to the linear-momentum equations. At the same time, linear 
momentum is conserved because the anti-symmetric stress is differenced conser- 
vatively and vanishes on boundaries. As we will show later, our anti-symmetric stress 
goes to zero in the limit of vanishingly small computational cell size and time step. It 
is present to cancel numerical errors that result in fictitious vorticity production or 
destruction. 

When shocks are present in the flow field, the above procedure must be changed to 
ensure that the correct jump conditions are obtained across the shocks. In the narrow 
region of the shock, we revert to a conventional formulation in which the conser- 
vative linear momentum equations are solved by conservative finite-difference approx- 
imations. As is well known [2], such a formulation gives the proper jump conditions 
across shocks, and, therefore, the proper amount of vorticity production in shocks. 
Later in this paper, we elaborate the necessity for this special treatment of shocks and 
tell how we switch between the numerical procedures used inside and outside shocks. 

Solving for ‘5’ is often an elliptic problem. Because we want to prescribe physical 
wall-boundary conditions, the value of 7’ must not interfere with these physical 
constraints; for this reason the boundary conditions on the components of r’ are 
generally that they vanish on computational boundaries. Elliptic equations must 
usually be solved by time-consuming iterative methods, but this is mitigated in the 
present case by the fact that Dirichlet boundary conditions are used. It has been our 
experience and that of others [2], that convergence is much more rapid when one has 
Dirichlet, and not Neumann, boundary conditions. 

To our knowledge, ours is the first method that solves conservation equations for 
both linear momentum and vorticity. Traditional methods for solving for flows with 
solenoidal velocity fields (V + u = 0) have used either the vorticity equation(s) [3] or 
the linear-momentum equations [4], but not both. When V . u = 0, the TFV method 
gives the same result as the stream function and vorticity method [3], assuming the 
same finite-difference equations are used for the vorticity. To see this, we note that 
there is a unique discrete velocity field that satisfies the finite-difference approx- 
imations to V . u = 0 and V x u = o (vorticity) together with associated boundary 
conditions. (We do not exactly obtain this unique velocity field in either method 
because a finite convergence tolerance must be used in solving the finite-difference 
equations). Since the stream function and vorticity method does not use the linear-. 
momentum equations, it will be faster than TFV, although no loss of accuracy is 
incurred by using the TFV method when V . u = 0. An interesting corollary to the 
above argument is that the stream function and vorticity method conserves linear 
momentum. 

When the velocity field is not solenoidal, the TFV method can significantly 
improve numerical accuracy. In this case, there is no stream function, and past 
studies have solved just the linear-momentum equations. It has been postulated [5] 
that in some applications, vortex compression could give rise to intense slowly 
damped vortices and that current numerical methods could not calculate these due to 
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large numerical damping. The validity of this criticism will be demonstrated later in 
this paper. 

We give the equations that are approximated in the TFV method--first for shock- 
free flows and then for flows with shocks. Next, we present four computational 
examples. The finite-difference approximations are described, and it is shown that 
solving the vorticity equation, significantly improves the accuracy of the calculations. 

THE EQUATIONS FOR SHOCK-FREE FLOWS 

We present the equations in Cartesian-tensor notation. In contrast to traditional 
formulations, equations are kept for both linear momentum and vorticity, and the 
linear momentum equations include terms arising from the anti-symmetric stress rij. 
The stress r; is taken to be proportional to the difference between the vorticity and 
the curl of the velocity field. 

The continuity equation is 
I apll. 
z++=o. 

I 

Before writing the momentum equation, we express the anti-symmetric stress r;j as the 
dual of a vector t;, 

where &ijk is the alternating 
momentum equation becomes 

aPui 
at + 

qj = Eijk t;, 

tensor [ 11. t; will be called the Turn vector. The 

(2) 

where uij is the usual symmetric Newtonian stress tensor, 

The vorticity equation is 

at++ 
at+ 

awiuj 
axj (3) 

Here we have written the vortex stretching term awjui/axj in its conservative form. 
We propose the simple constitutive relation for the Turn vector, 

t; =p, (4) 
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The value of the proportionality constant pt, which has the dimensions of a viscosity, 
will be discussed shortly. 

Equations (l)-(4), together with an energy equation, are to be approximated by 
finite differences. The precise form of the energy equation does not concern us in this 
paper, but we do note that the Turn vector t; should not appear in it. The reason for 
this is that the Turn vector is used in (2) to cancel certain truncation errors that arise 
when we approximate (2) by finite differences, and that otherwise cause a fictitious 
numerical stress. Thus, no net stress results in the linear-momentum equation or 
should appear in the energy equation. 

Due to truncation errors, when they are approximated by finite differences, 
Eqs. (l)-(3) are not solved exactly. The equations that are solved (at a finite number 
of grid points) can be obtained by expanding the terms in the finite difference 
equations in Taylor series in 6xi and at, the computational cell size and time step [6]. 
The result of this expansion will be modified forms of Eqs. (l)-(3), 

g+- , 
aPui =R 
axi 

aPui - ,-+g=g+eijkg+si, 
at 

+ aPUiUj 

.I I J I 

and 

+ Ti* (3’) 

R, Si, Ti are sums of truncation error terms that are proportional to positive powers 
of 6xi and at, and that therefore become vanishingly small when 6xi and 6t approach 
zero. 

From Eqs. (l’k(3’) we can derive a transport equation for the discrepancy Di 
between the vorticity field and the curl of the velocity field; that is, 

Taking the time derivative of (5), substituting from (1’) to (3’) and using ti =,u,D, 
gives 

Thus the discrepancy is convected and “stretched,” like the vorticity. It is produced 
due to truncation errors and is diffused with diffusion coefficient ,u,/p. 
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An important conclusion can be drawn from Eq. (6), and this is that the Turn 
vector terms vanish in the limit of vanishingly small 6xi and 6t. Thus we are solving 
the correct equations for a compressible fluid. To see this let us assume, for example, 
that we are using a second order accurate numerical method for all equations. Then 
reducing 6xi and 6t by a factor of n will result in the truncation errors ri, Si, and R 
being reduced approximately by a factor of n*. Since Di vanishes on computational 
boundaries, it is clear from a scaling argument applied to (6), that Di, and hence t,!, 
will also be reduced by a factor of rz* for the refined mesh. This same argument 
shows that including the Turn vector terms does not degrade the order of accuracy of 
the numerical solution if the order of accuracy of the finite-difference approximation 
to (3) is not lower than those to Eqs. (1) and (2). 

We now discuss possible choices for the viscosity ,uul. One choice is to take .D, very 
large. When ,LL~ approaches infinity, Eq. (4) is replaced by 

(7) 

Equation (7) is then a constraint that determines the Turn vector. From (6) we see 
this is equivalent to solving the elliptic Poisson equation for tl, 

03) 

The advantage of taking ,B~ large is that strict equality is maintained between the 
vorticity field and the curl of the velocity field. One disadvantage is that we must 
always solve an elliptic equation for t;, which is computationally time-consuming. 

There is another apparent disadvantage of the large ,D~ formulation, and this can be 
seen from Eq. (6). Any discrepancy Di that is produced, is instantaneously diffused to 
the boundaries of the computational region, and thereby can alter the flow upstream 
of the region of discrepancy production, even in a supersonic flow. One manifestation 
of this is that we cannot specify all the boundary conditions we would like at an 
inflow boundary where there is inviscid supersonic flow. Since (8) is elliptic, we can 
specify ti or the normal derivative of t: but not both, at an inflow boundary. Suppose 
we specify t\. Then the derivatives of t; normal to the inflow boundary are obtained 
as part of the calculation. Since these normal derivatives appear on the right-hand 
sides of the equations for the tangential velocity components [cf. Eq. (2)], not all the 
quantities on the left-hand sides of these equations can be specified at an inflow 
boundary. Thus at an inflow boundary we cannot specify all three velocity and 
vorticity components and all thermodynamic properties. A similar situation is 
encountered if the normal derivatives of t; are specified. 

The magnitudes of the upstream disturbances can be significantly reduced if we 
choose a value for ,ut based on the criterion that diffusion wave velocities be less than 
or equal to the local adiabatic sound speed c. Since a diffusion wave of length L 
propagates with approximate speed p,/pL, this criterion gives 
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where L is a characteristic length associated with the problem. Since we also want as 
large a value of ,u~ as possible to reduce the size of the discrepancy Di, we take 

,uu, = pcL. (9) 

The advantage of this finite value of ,u* is that waves of length greater than or equal 
to L have subsonic diffusion velocities. One disadvantage is that again the Turn 
vector terms must usually be differenced implicitly. Another disadvantage is that we 
are allowing a nonzero discrepancy between the vorticity and the curl of the velocity 
field, although this discrepancy does vanish in the low Mach number limit. To see 
this, we note that the Reynolds number based on ,LL~ and L, is simply the charac- 
teristic Mach number of the flow. Hence, for low Mach numbers, the convective 
terms in (6) are negligible, and the infinite pr formulation is recovered. Both the 
infinite and finite values of pt have advantages and disadvantages, and will be further 
evaluated in the computational section of this paper. 

THE EQUATIONS FOR FLOWS WITH SHOCKS 

When shocks are present in the flow field in high Reynold’s number problems, 
numerical solutions of the equations of the preceding section can have the incorrect 
jump conditions across the shocks. In this section, we tell how this error arises and 
give a method that ensures that the correct shock jump conditions are obtained. This 
method is to return in the neighborhood of shocks to a traditional conservative 
formulation to the equations without Turn vector terms. 

To see why solutions to the equations of the preceding section can have the 
incorrect jump conditions, let us examine the momentum conservation equation (2). 
From it we see that the momentum flux per unit area in the direction of the unit 
normal nj to a surface S is 

Pi = pui@lj - uj)nj + pi + qjkt;nk. 

Here vj is the surface velocity. By considering the total flux of momentum into a thin, 
pancake-shaped volume whose flat faces lie on either side of the shock, we can in the 
usual manner derive the shock conservation condition for momentum 

p+u:(uf - Vj)rzj’ + pfn’ + Eijk(t;)+n; 

- [p-u;(uj - vjpzi’ + p-n’ +&ijk(t;)-n:] +JjyPida=o. (10) 

Here n: is the unit normal pointing to the “+” side of the shock, and the integral is 
over the lateral, thin surface of the pancake. This integral could be dropped in the 
limit of a very thin pancake if the integrand were bounded, but in our case this 
cannot be done. Due to truncation errors, the Turn vector can be very large in 
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shocks. We usually like to keep a fixed number of computational cells in the shock, 
and hence, as the mesh is refined, the truncation errors in the shock can grow without 
bound. Even if this integral is ignored, if we take the scalar product of (10) with any 
unit vector Ii in the plane of the shock, we see that 

upip+(Uf - Uj)rq + Eijk(tj’)+n: li = z4Jip-(u/ - Uj)tq + &ij&;)pz:li. 

Since 

m =p+(uf -uj)n; =p-(u/ - uj,Tz; 

is the mass flow through the shock, we have 

(zq - u;)li = $n:r,((t;)- - (tj)+).. (11) 

From (11) we see that in order to have no jump in tangential velocity components 
across a shock, we need to have no jump in the tangential components of the Turn 
vector. This will probably not be true due to the large truncation errors in the 
neighborhood of computational shocks. 

To remedy this situation, in shocks we revert to a traditional finite difference 
formulation of the compressible flow equations. The Turn vector is set to zero, and 
the vorticity is computed from its defining equation in terms of velocity. Our 
treatment of shocks is depicted schematically in Fig. 1. The shock separates regions 
II and III, where the Turn vector is zero. In regions I and IV the vorticity equation is 
solved. Switch surfaces separate neighboring regions where different algorithms are 
used. By equating the momentum fluxes across the three interfaces in Fig. 1, one now 
obtains for the momentum conservation condition across the shock, 

mu; + JAI: + Eij&)‘n: = muf” + p’“nf + &,,(t;)‘“n~. (12) 

FIG. 1. Schematic depiction of our numerical treatment of shocks. The vorticity equation is solved 
in regions I and IV and not solved in regions II and III. 
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Now since the values of the Turn vector in regions I and IV vanish in the limit of 
vanishingly small computational cell size, the correct jump conditions are obtained. 

It remains to tell how we determine whether or not we are in the neighborhood of a 
shock. To do this we compute a switching parameter /? from the formula 

p=;!$ 
0 k 

(13) 

where L and no are characteristic length and velocity scale of the problem. If ,f? < -1, 
we are in a shock, and the Turn vector is set to zero. If ,f3 > -1, the vorticity equation 
is used. 

NUMERICAL CONSIDERATIONS 

In this section we describe the numerical techniques that we use to solve the 
equations of the TFV method. Emphasis is placed on the finite-difference equations 
used to obtain w and t’. We also discuss the numerical treatment of the 
computational boundaries that are used in the calculations of the next section. 

In the next section we describe solutions to the equations of the TFV method in 
planar coordinates and in cylindrical coordinates assuming axial symmetry and no- 
swirl velocity. For future reference we give these equations here for high Reynolds 
number flows. In planar Cartesian coordinates with x and y as independent variables 
and u and u the associated velocity components, the equations are 

!!!+%?E+pL=(). 
aY 

(14) 

apu ap22 apuu ap at! 
at+ax+- ay +;?y=w (15) 

apv apuv + apd ap at! at+- - ax ay %=-x3 

aw24 awv $- - 
aiT ai?!! 

P ax p aJL0 
ax+ay+(SJ:-- ' ax 

(16) 

(17) 

and 

(18) 
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In cylindrical coordinates, with z and r as independent variables, and u and u the 
associated velocity components, the equations are 

!F+g+-- ) 1 %vr =. 
r f3r 

It can be seen that (22) conserves w/r. These equations are, of course, to be used 
outside of shocks. In shocks, the vorticity equation is not solved, and we set t’ = 0. A 
form of upwind differencing, which we will describe shortly, was used to stabilize the 
calculations and to provide dissipation in shocks. 

All the calculations were performed with a modified version of the LDEF 
computer program [7]. LDEF solves conservative mass and momentum equations 
using the ICE technique [8], and a thermal enthalpy equation. This energy equation 
does not conserve total energy, and thus, in the problems of the next section where 
energy conservation is important, we calculated an isothermal flow so that errors due 
to lack of energy conservation did not obscure our validation of the TFV method. 

To modify LDEF to incorporate the TFV method, we simply added an additional 
subroutine that was called at the end of each computational cycle. The subroutine 
updated the values of w and t’ by one computational time step 6t and calculated the 
changes in velocity due to t’. The locations of the computational cell (i, j) variables 
are shown in Fig. 2. The staggered-mesh system of the ICE method was used and the 

CELL(i,j+l) 

. - CELL(i+l,j) 
Ptj3pijz 
etc -l---b (“s$ ] 

FIG. 2. LDEF computational cell (i, j) and the locations of the variables with subscripts (i,j) 



368 PETER J. O’ROURKE 

vorticity wij and Turn function t; (the subscripts being cell indices) were naturally 
located at the upper-right corner of the cell, where the difference approximation, 

(24) 

had second-order accuracy in space. The superscript n denotes that the quantity is 
evaluated at time t = ndt. 

The convective terms in the vorticity equation were approximated by taking the 
average of the results obtained using Leith’s method and pure upwind or donor-cell 
differencing [2]. In problems where the flow was isothermal, the pressure gradient 
terms were neglected. Otherwise, we differenced (a/~?$)( l/p)(@/&) by 

and WX)(~/P)@MY) similarly. Advaced-time pressures and densities were known 
and used at that point in the computational cycle when the vorticity equation was 
solved. 

After solving for w;+ ‘, the values of fyj’ ’ were found by simultaneously solving the 
following equations, and Eq. (24) by Gauss-Seidel iteration, 

and 

(27) 

(28) 

The quantities (J%)~,~ and CJ%)~,~ were partially updated values of the mass fluxes that 
included changes due to all terms except the Turn function terms. In shocks, the 
vorticity equation and Eq. (24) were replaced with 

and 

(f’);+ ’ = 0 (29) 

(30) 

and (25t(28) were retained. 
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WALL 

FIG. 3. The vorticity flux is set to zero across boundaries adjacent to rigid walls. 

The mass equation was uncoupled from this iteration. This is because the finite- 
difference approximation to (@~/ax) + (@u/@), which was 

@~)~,~ ’ - @U)~~l_+,) + @U)~,s ’ - @v)~,i” 1 
6.x 6.v ’ 

does not change when @,)“‘I and (@)“+I are replaced by p; and fi. Thus the finite- 
difference equations reflect the fact that the Turn vector does not appear in the 
transport equation for V . @u). 

In the example calculations, three types of computational boundaries were encoun- 
tered: rigid-walls, inflow boundaries, and outflow boundaries. We next discuss how 
these boundaries were treated when computing the Turn function and vorticity. 

We treated the Turn function and vorticity at cell vertices on walls the same as for 
cell vertices in shocks; that is, the Turn function was set to zero. This ensured that 
there was no loss of the tangential linear momentum component at the wall. When a 
vorticity cell was a half-cell size away from a wall, as is depicted in Fig. 3, we set to 
zero the convective flux of vorticity across the boundary that lay closest to the wall. 
Although it was-usually not needed the vorticity associated with the half-cell next to 
the wall was calculated by differencing w = &(&Jan) (whichever sign applied), using 
the computed value of u1 closest to the wall and Us = 0 at the wall. Here v, is the 
tangential velocity component to the wall and n is the normal direction to the wall. 
This much vorticity is confined to a very thin boundary layer next to the wall. This 
wall vorticity value was only used if flow separation caused the wall vorticity layer to 
enter the interior flow. 

At inflow boundaries, we specified the normal velocity v, to be uniform and the 
Turn function to be zero. Then, as we have discussed previously, with the TFV mthod 
we cannot specify both the tangential velocity component and the vorticity at an 
inflow boundary, even if it is a supersonic inflow boundary. In the calculations of this 
paper we have specified w = 0 at the inflow boundary. Then we have taken 
(auf/&) = 0, as is required by the condition that the Turn function be zero. 

We now describe our outflow boundary treatment. Figure 4 shows a portion of 
such an outflow boundary located at the right-hand side of the computational mesh. 
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OUTFLOW 
BOUNDARY 

FIG. 4. Vorticity cell located next to an outflow boundary. 

Donor-cell differencing is used for the convective terms at the right-hand edge of 
those cells located next to the boundary. In particular, donor-cell differencing was 
used on the right-hand edge of the vorticity cell outlined by dashes in Fig. 4. The 
normal velocity is computed at the outflow boundary, and for this purpose the 
pressures in the column of cells i = IMAX were set according to P:,‘:,,j = P:M,,j. In 
an analogous fashion, the Turn function at the outflow boundary was set according to 
Ct')YMt:,j= (f')YM2,j' Other outflow boundary treatments are undoubtedly possible, but 
having found this “continuative” outflow boundary to be adequate, we did not pursue 
the matter further. 

COMPUTATIONAL RESULTS 

In this section we describe the results of three series of calculations performed both 
with the old LDEF program and the version modified to include the TFV method. 
The purpose of the calculations was to test the ease of implementation of the TFV 
method and to see how it affected computational accuracy. The results demonstrate 
both the versatility of the method and the large errors that can result when the 
vorticity equation is not solved in compressible flow calculations. 

Problem 1. Incompressible Vortex 

The problem was to calculate a Rankine vortex located at the center of a square 
box. Figure 5 shows the computer-generated velocity vector and vorticity contour 
plots at time t = 0.0. All quantities are specified in nondimensional units. In this and 
all subsequent contour plots, H and L are the highest and lowest values associated 
with contour lines. The initial vortex had a core with angular velocity one (W = 2) 
and a radius of one. The sound speed was ten, and hence, the flow was nearly incom- 
pressible. The dimensions of the box were twelve units on a side, and all boundaries 
were rigid, free-slip walls. The box was resolved with a uniform mesh of square cells 
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FIG. 5. Velocity vectors (a) and vorticity contours (b) at time f = 0.0 in the incompressible vortex 
calculations, (H = 1.80, L = 0.20). 

FG 6. Vorticity contour plots at time f = 25.0 in the calculations with (a) (H = 0.79. L. = 0.09) 
and without (b) (ff = 0.49. L = 0.05) the TFV method. 
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FIG. 7. Turn function contour plot, (H = 0.019, L = 0.001). 

with 6~ = 0.5, and the computational time step was 6t = 0.125. Because the flow was 
inviscid and incompressible, the exact solution was circulation-preserving. Thus for 
the exact solution both the area of the vortex core and the total vorticity contained in 
it should be constant, although the shape of the core could change due to boundary 
effects. 

Figure 6 gives vorticity contour plots for the calculations with an without the TFV 
method at a time t = 25.0, which is approximately four revolution-times of the 
original vortex core. It is seen that the high vorticity contour value in the TFV 
calculation is 60% higher than in the LDEF calculation, and that there has been less 
spreading of the core vorticity. The diminished vorticity values in both calculations 
were not due to a lack of conservation of total vorticity. The TFV calculation 
conserved total vorticity while the LDEF calculation lost less than one percent of the 
original vorticity in the mesh. The errors in both calculations were due to numerical 
diffusion of vorticity, and this diffusion was much less in the TFV method 
calculation. 

The plot of the Turn function in Fig. 7 is informative. The gradients in the Turn 
function are largest where the largest production of discrepancy D k w - ((&/ax) - 
(au/&)) occurs due to truncation errors. It can be seen that the largest truncation 
errors occur where the flow is in the direction of cell diagonals. 

Problem 2. Isothermal Bow Shock 

The purpose of this calculation was to test our treatment of shocks in the TFV 
method. The geometry for this planar shock problem is shown in Fig. 8. A uniform 
Mach two flow entered the computational mesh from the left. At a distance of 3.0 
from the inflow boundary, the flow encountered a step with a height of 1.0. Again, all 
units are nondimensionalized. The top and bottom boundaries, which were separated 
by a distance of 8.0, were rigid, free-slip walls. The outflow boundary was located 5 
units downstream from the inflow boundary. 
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RIGID WALL 

/ r 
OUTFLOW 

FIG. 8. Geometry for all the bow shock calculations. 

Numerical treatment of the corner of the step in Fig. 8 requires careful 
consideration. Experimentally it is observed that the flow along the leading edge of 
the obstacle separates at the corner. When the flow separates, the vorticity associated 
with the very thin boundary layer along the leading edge, is injected into the interior 
of the flow region. To include this effect in our TFV method calculation, we allow a 
vorticity flux through the bottom boundary of the vorticity cell immediately above 
the corner of the obstacle. This vorticity flux was computed for the surface shown in 
Fig. 9 extending from point (x1, JI,) at the center of the top boundary of cell (i, j) to 
the point (x2, JI,) at the corner of the obstacle. Although this surface does not 
coincide with the bottom boundary of the vorticity cell above the corner (the dashed 
line in Fig. 9), we compute the vorticity flux through it because it is the surface 
across which vorticity enters the flow. The vorticity flux is simply computed from 

We have used here the facts that the u velocity is small near the wall and that v is 
zero on the wall. These considerations are not encountered when one does not solve 
the vorticity equation, and, as the computational results will show, .the TFV method 
can give a much more accurate calculation of the flow around corners. 

“$ OBSTACLE 
/ 

FIG. 9. Enlarged view of the corner of the obstacle. The vorticity flux was computed for the surface 
extending from (x, , y,) to (x2, JJ,). 
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FIG. 10. Plots from the steady solution obtained with LDEF. Shown are velocity vectors (a) and 
contours of p (b) (H= 4.09, L = 1.21), w (c) (H= 0.64, L = -10.40), and w/p (d) (H= 0.49, 
L = -8.64). 

Figure 10 shows plots from the steady solution obtained with the LDEF code. The 
velocity vectors at first turn slightly upward in the shock (positive vorticity) and then 
behind the shock all the angular motion is in a clockwise direction (negative 
vorticity). The density behind the shock is highest where the shock is normal to the 
flow, and the value associated with the highest density contour (4.09) is close to the 
value the density should have along the center line immediately behind the shock 
(4.00). When the flow behind the shock goes around the corner of the obstacle, it 
becomes supersonic, and goes through a rarefaction fan. Because of this the fluid 
densities along the top of the obstacle are actually lower than the inflow value. The 
plots of w and w/p show the regions of small positive vorticity in the shock and 
negative vorticity behind the shock, but the most dominant feature of these plots is 
the small region of intense vorticity near the corner of the obstacle. This is associated 
with the flow separation phenomenon. Flow separation was not calculated (as is 
evidenced in the velocity vector plot) due to insufficient numerical resolution at the 
corner. This solution computed by LDEF is in qualitative agreement with the results 
of other numerical studies of bow shocks 191. 

When we computed this same problem using the TFV method with a very large 
value of jft, a steady solution was not obtained. This is seen in Fig. 11, which gives 
plots of velocity vectors and contours of density at time t = 1.6. The shock has 
become less oblique to the inflow and has intersected the upper boundary of the 
computational region. After t = 1.6, the shock continues to move upstream. We 
postulated that this behavior was due to the large upstream disturbances in the 
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FIG. 11. Velocity vectors and density contours at time I = 1.6 in the TFV method calculation with 
,u, = co, (H = 3.68, L = 0.98). 

computed velocity field of Fig. 11. The possibility that such disturbances could occur 
has already been discussed. In this calculation, positive u velocities were computed 
before the switching parameter j3 signaled that a shock was present. Thus the vorticity 
equation was being used and the constraint w = 0 enforced, in the region of positive v 
velocities. Apparently this vorticity constraint forced positive u velocities even at the 
inflow boundary. The altered flow direction ahead of the shock caused the shock to 
change its angle and to intersect the upper boundary. Clearly the numerical errors in 
this calculation are unacceptable. 

FIG. 12. Plots from the steady solution of the finite p1 TFV equations. Velocity vectors and contours 
ofp (b) (H=3.89, L= 1.13), w (c) (H=0.07, L=-4.38), and w/p (d) (H=O.O8,L=-2.71). 
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When the TFV calculation was repeated with pI = pcL and L = 1.0, a steady 
solution was obtained. The plots of Fig. 12 show that the upstream disturbances in 
the velocity field have been almost completely eliminated, and the shock location is 
nearly the same as in the LDEF calculation. In fact the solutions are very close 
except for the region close to and downstream of the corner of the obstacle. That the 
two solutions are close away from the obstacle can be seen more clearly by 
comparing the plots of Fig. 12 with those of Fig. 13, which are contour plots of the 
LDEF solution using the same values associated with the contour lines as in Fig. 12. 
Near the corner of the obstacle the maximum magnitude of the vorticity in the TFV 
calculation was 4.93, and in the LDEF calculation it was 11.78. Thus the TFV 
calculation gave the same vorticity production due to the shock as the LDEF 
calculation, but gave a more accurate calculation of the flow near the corner of the 
obstacle. 

Figure 14 gives plots of the Turn function and the switching parameter j3. The Turn 
function plot again shows that the largest differences between the TFV and LDEF 
calculations occurred near the corner of the obstacle. On the /I contour plot, we have 
indicated the region where the vorticity equation was not solved. The velocity and 
length scales used to compute p (see Eq. 13) were the inflow boundary velocity and 
L = 20. 

The exact values for the vorticity behind a curved shock can be calculated in terms 
of the shock curvature, angle, and the upstream fluid variables [lo]. Agreement can 
be obtained between our calculation and theory, but due to the large uncertainty in 
the shock location in the calculation, such a comparison is not very meaningful. 

b 

FIG. 13. Plots of the steady LDEF solution using the same contour values as in the contour plots of 
Fig. 12. Velocity vectors and contours of p (b) (H = 3.89, 2. = 1.13), w (c) (H = 0.07, L = -4.38), and 
w/p (d) (H=0.08, L = -2.71). 
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FIG. 14. Plots of the Turn function (a) (H= 18.9, L = -1.6) and switching parameter /I (b) 
(H = 3.14, L = -4.16) from the TFV method steady solution. 

Problem 3. Shock-Vortex Interaction 

The problem to be solved was that of an isothermal shock passing over a vortex in 
a square box. Figure 15 shows the computer-generated vorticity contour plot at time 
t = 0.0 All quantities are specified in nondimensional units. The initial Rankine 
vortex had a core with angular velocity equal to one (W = 2) and a radius of one. The 
initial fluid density in the box was one, and the sound speed was ten. The dimensions 
of the box were three units on each side. The top, right, and bottom boundaries were 
rigid, free-slip walls. The left boundary was an inflow boundary at which the normal’ 
component of the velocity was specified to be 15.0 and the density of the inflowing 
fluid was specified to be 4.0. This resulted in a shock with density (and pressure) 
ratio 4.0 propagating from left to right with a speed of 20.0. The reflected shock from 

FIG. 15. Vorticity contour plot at time t = 0.0 for the shock-vortex interaction calculation, 
(H = 1.80, L = 0.20). 
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FIG. 16. Contour plots of vorticity at (a) t = 0.075, H = 4.04, L = 0.33 from the TFV calculation, 
(b) f = 0.075, H = 3.49, L = -0.35 from the LDEF calculation, (c) t = 0.15, H = 4.65, L = 0.30 from 
the TFV calculation, and (d) t = 0.15, H = 4.15, L = -0.04 from the LDEF calculation. 

the right wall also has a density ratio of 4.0 and propagated to the left with a speed 
of 5.0. The box was resolved with a uniform mesh of square cells with 6x = 0.125. 
The computational time step 6t was 0.002. 

Figure 16 shows plots of the vorticity obtained in calculations with and without the 
TFV method at times t = 0.075 and t = 0.15, when the incoming shock had just 
reached the right boundary of the box. For the TFV calculation the finite ,ul 
formulation was used with L = 1.0. At time t = 0.075, the shock has just compressed 
the left half of the vortex core, and at time t = 0.15, the fluid behind the shock, has 
swept the vortex downstream to the right wall of the box. The shapes of the contours 
obtained in the two solutions look nearly the same; however, the values associated 
with the high contours at t = 0.15 differ by ten percent. In fact at t = 0.15 in the 
calculation with the old LDEF computer code the total circulation .in the mesh was 
3.40, and in the TFV calculation it was 5.32. The original total circulation was 6.28. 
While confirmation of accuracy through comparison with analytic solutions is not 
possible, it is clear that in the LDEF calculation there has been considerable 
numerical damping of the vertical motion. 

The differences between the two calculations are even more striking at times after 
the shock reflects off the right wall (t = 0.15). Figure 17 gives vorticity contour plots 
at t = 0.30. The high contour value in the LDEF calculation is 72% of that in the 
TFV calculation. There are two reasons for the appearance of this large discrepancy 
at times after t = 0.15, First, the LDEF calculation continues to lose vorticity due to 
numerical damping. The second reason has to do with the method we used to 
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FIG. 17. Contour plots of vorticity at time t = 0.30 from the TFV calculation (a) (H = 7.68, 
L = 0.28) and LDEF calculation (b) (H= 5.52, L = -0.38). 

difference the convective terms in the vorticity equation. This method was conser- 
vative but fairly diffusive. Up to t = 0.15, the vortex-core region was moved about ten 
cells to the right, and there was a large amount of numerical diffusion of the vorticity 
of the core region. This diffusion kept the values associated with the high contour in 
the two calculations relatively close before t = 0.15. Between t = 0.15 and t = 0.30, 
the core region is compressed by the reflected shock, but its position is nearly 
unchanged. There is less numerical diffusion of vorticity during this time, and the 
discrepancy between the two calculations widens. These numerical diffusion errors 
are not, of course, inherent in the TFV method, and they can be reduced by using a 
more accurate numerical method for convecting vorticity. 

Problem 4. Mach 0.4 Potential Flow Over a Disc 

The purpose of this calculation was to demonstrate some of the increased flexibility 
one obtains by using the TFV method. This problem cannot be calculated with either 
a stream function and vorticity method, because V . zi# 0, or with a traditional 
compressible flow method, in which the irrotationality condition cannot be specified. 

The calculation was of an axisymmetric, Mach 0.4, potential flow over a circular 
disc. An enthalpy equation was solved for this calculation, and the equation of state 
was that of an ideal gas with y = C,/C, = 1.4. The computational mesh had 30 cells 
axially and 20 cells radially, and the cell dimensions were constant with 6r = 6z = 
0.20. The bottom boundary was the symmetry axis and the top boundary was a rigid 
wall. At the left boundary, uniform inflow conditions were specified, and the density 
was set equal to one. The right boundary was a continuative outflow boundary. The 
disc had a radius of one. 

Figure 18 shows the velocity vectors and density contour plots of the steady 
solution. The minimum density behind the disc is 0.673. When we performed this 
same calculation but omitted the pressure gradient terms in the vorticity equation, the 
same numerical solution was obtained. Since the flow in this problem was homen- 
tropic, we have 



380 PETERJ.O'ROURKE 

FIG. 18. Velocity vectors and density contours for the computed steady solution of the Mach 0.4 
potential flow over a disc, (H = 1.06, L = 0.72). 

for the exact solution. Thus the truncation errors associated with the finite difference 
approximation to V X (l/p) Vp were small. 

CONCLUSIONS 

A numerical method, called the Turn function and vorticity method, has been 
developed that will increase the accuracy of compressible fluid-flow calculations in 
many applications. The method solves linear-momentum and vorticity equations in a 
consistent fashion and is easy to implement in existing compressible flow codes. 
Better computational results are obtained with a version of the method in which the 
vorticity is maintained close to but not equal to the curl of the velocity field. In 
problems with shocks, it is necessary to set the Turn function to zero in the 
neighborhood of the shocks in order to calculate the correct jump conditions. The 
TFV method gave more accurate results in example calculations of Rankine vortices, 
shock-vortex interactions, and a bow shock in front of a blunt obstacle. 
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